Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

3-(3-Nitrophenylaminocarbonyl)propionic acid: hydrogen-bonded sheets of alternating $R_2^2(8)$ and $R_6^6(36)$ rings

James L. Wardell,^a Janet M. S. Skakle,^b John N. Low^b and Christopher Glidewell^c*

^aInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil, ^bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and ^cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland Correspondence e-mail: cg@st-andrews.ac.uk

Received 1 December 2005 Accepted 2 December 2005 Online 24 December 2005

Molecules of the title compound, $C_{10}H_{10}N_2O_5$, are linked by a combination of $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds into (100) sheets containing alternating $R_2^2(8)$ and $R_6^6(36)$ rings.

Comment

The reaction of C-substituted anilines, such as nitroanilines, with succinic anhydride yields initially 3-(arylaminocarbonyl)propionic acids, (A) (see scheme), dehydration of which yields the corresponding N-arylsuccinimides, (B). We have recently reported the molecular and supramolecular structures of the three isomeric N-(nitrophenyl)succinimides (B), where $R = NO_2$ (Glidewell *et al.*, 2005). We have now prepared all three isomeric 3-(nitrophenylaminocarbonyl)propionic acids (A), where $R = NO_2$, but unfortunately only the 3-nitro isomer has provided crystals suitable for single-crystal structure determination. We report here the molecular and supramolecular structures of 3-(3-nitrophenylaminocarbonyl)propionic acid, (I).

The molecules of (I) (Fig. 1) are linked into sheets by a combination of an N-H···O=C hydrogen bond, forming the usual amidic C(4) chain, and an O-H···O hydrogen bond, forming the usual centrosymmetric $R_2^2(8)$ (Bernstein *et al.*, 1995) motif characteristic of simple carboxylic acids (Table 1). Carboxyl atom O43 in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom O44 in the molecule at (1 - x, 1 - y, 1 - z), so that the reference $R_2^2(8)$ dimer is centred at $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ (Fig. 2). Amide atoms N1 at (x, y, z) and (1 - x, 1 - y, 1 - z), which form part of the dimer centred at $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$, act as hydrogen-bond donors to amide atoms O1 at $(x, \frac{1}{2} - y, -\frac{1}{2} + z)$ and $(1 - x, \frac{1}{2} + y, \frac{3}{2} - z)$, respectively, which themselves form

parts of the $R_2^2(8)$ dimers centred at $(\frac{1}{2}, 0, 0)$ and $(\frac{1}{2}, 1, 1)$, respectively. Similarly, atoms O1 at (x, y, z) and (1 - x, 1 - y, 1 - z) accept hydrogen bonds from atoms N1 at $(x, \frac{1}{2} - y, \frac{1}{2} + z)$ and $(1 - x, \frac{1}{2} + y, \frac{1}{2} - z)$, which are pairs of the dimers centred, respectively, at $(\frac{1}{2}, 0, 1)$ and $(\frac{1}{2}, 1, 0)$. In this manner, each dimer

is directly linked to four other dimers *via* the amidic C(4) chains along [001], so forming a (100) sheet in which centrosymmetric $R_2^2(8)$ and $R_6^6(36)$ rings alternate in a chessboard fashion (Fig. 3).

Figure 1

The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

Part of the crystal structure of (I), showing the formation of an $R_2^2(8)$ dimer centred at $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$. Atoms marked with an asterisk (*) are at the symmetry position (1 - x, 1 - y, 1 - z).

Figure 3

A stereoview of part of the crystal structure of (I), showing the formation of a (100) sheet built from $R_2^2(8)$ and $R_6^6(36)$ rings.

Experimental

A solution containing equimolar quantities of succinic anhydride and 3-nitroaniline (2 mmol of each) in 1,2-dichloroethane (20 ml) was heated under reflux for 1 h and then left overnight at room temperature. The solvent was removed under reduced pressure and the resulting solid product was recrystallized from ethanol (m.p. 455-457 K). IR (KBr): 3400-2000 (br), 1706, 1673, 1524, 1556, 1524, 1481, 1434, 1403, 1351, 1257, 1237, 1179, 1089, 1064, 993, 952, 891, 868,847, 819, 806, 737, 684, 670, 606, 540, 421, 498 cm⁻¹.

Crystal data

$C_{10}H_{10}N_2O_5$	$D_x = 1.441 \text{ Mg m}^{-3}$
$M_r = 238.20$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 2525
a = 6.6765 (4) Å	reflections
b = 19.7961 (13) Å	$\theta = 2.1-27.6^{\circ}$
c = 9.0675 (5) Å	$\mu = 0.12 \text{ mm}^{-1}$
$\beta = 113.595 \ (4)^{\circ}$	T = 293 (2) K
$V = 1098.25 (11) \text{ Å}^3$	Plate, colourless
Z = 4	$0.38 \times 0.17 \times 0.04~\text{mm}$
Data collection	
Bruker SMART 1000 CCD area-	2525 independent reflections

1537 reflections with $I > 2\sigma(I)$

 $R_{\rm int}=0.038$

 $\theta_{\rm max} = 27.6^{\circ}$

 $h = -8 \rightarrow 8$

 $k = -25 \rightarrow 25$

 $l = -11 \rightarrow 9$

detector diffractometer ω scans Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\rm min}=0.967,\;T_{\rm max}=0.995$ 9375 measured reflections

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.044$	$w = 1/[\sigma^2(F_0^2) + (0.0652P)^2]$
$wR(F^2) = 0.115$	where $P = (F_0^2 + 2F_c^2)/3$
S = 0.91	$(\Delta/\sigma)_{\rm max} < 0.001$
2525 reflections	$\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$
162 parameters	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N1—H1···O1 ⁱ O43—H43···O44 ⁱⁱ	0.89 0.82	1.96 1.84	2.850 (2) 2.654 (2)	173 175

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 1.

The space group $P2_1/c$ was uniquely assigned from the systematic absences. All H atoms were located from difference maps and then treated as riding atoms, with C-H distances of 0.93 (aromatic) or 0.97 Å (CH₂), an N-H distance of 0.89 Å, and an O-H distance of 0.82 Å, and with $U_{iso}(H) = 1.2U_{eq}(C,N,O)$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

The authors thank the University of Aberdeen for funding the purchase of the diffractometer. JLW thanks CNPq and FAPERJ for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1893). Services for accessing these data are described at the back of the journal.

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2000). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
- Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
- Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61. o216-o220.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.